
Function calling - Connect
ChatGPT to the Internet
Ashish Tiwari
Senior Developer Advocate

Challenges for Developers

Challenges for Developers

LLMs Challenges

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Inconsistent response

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Inconsistent response

Common challenges

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Inconsistent response

Common challenges
Decision making on Nantural Language
Query

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Inconsistent response

Common challenges
Decision making on Nantural Language
Query

Executing correct componenet / code /
function according to NL Query

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Inconsistent response

Common challenges
Decision making on Nantural Language
Query

Executing correct componenet / code /
function according to NL Query

Challenges for Developers

LLMs Challenges
Connecting private data (RAGs, Fine
tuning)

Security and Privacy

Inconsistent response

Common challenges
Decision making on Nantural Language
Query

Executing correct componenet / code /
function according to NL Query

Function calling

Function calling

Function calling in OpenAI refers to the capability of AI models to interact with external functions or APIs,
allowing them to perform tasks beyond text generation.

fetch_from_elasticsearch(nl_query) :

Accepts query in natural language (e.g. Average delay time of flights going to India?)

Convert Query into Elasticsearch Query DSL

Exectute Query on Index

def fetch_from_elasticsearch(nl_query):

query_dsl = build_query(nl_query)

Exectue query_dsl on Elasticsearch

...

...

...

json_resp = json.dumps(resp, indent=4)

return json_resp

fetch_from_elasticsearch(nl_query) :

Accepts query in natural language (e.g. Average delay time of flights going to India?)

Convert Query into Elasticsearch Query DSL

Exectute Query on Index

def build_query(nl_query):

index_mapping = get_index_mapping()

ref_document = get_ref_document()

prompt = f"""

Use below index mapping and reference document to build Elasticsearch query:

Index mapping:

{index_mapping}

Reference elasticsearch document:

{ref_document}

Return single line Elasticsearch Query DSL according to index mapping for the below search query:

{nl_query}

few example of Query DSL

{few_shots_prompt}

"""

fetch_from_elasticsearch(nl_query) :

Accepts query in natural language (e.g. Average delay time of flights going to India?)

Convert Query into Elasticsearch Query DSL

Exectute Query on Index

def get_index_mapping():

Query on Elasticsearch to get mapping

...

...

...

mapping = json.dumps(resp, indent=4)

return mapping

fetch_from_elasticsearch(nl_query) :

Accepts query in natural language (e.g. Average delay time of flights going to India?)

Convert Query into Elasticsearch Query DSL

Exectute Query on Index

def get_ref_document():

Query on Elasticsearch to one reference document from Index

...

...

...

json_resp = json.dumps(resp["hits"]["hits"][0], indent=4)

return json_resp

weather_report(latitude, longitude)

This function returns weather report in json .

Accepts parameter latitude & longitude (e.g. "12.96","77.75")

It calls Open-Meteo API to fetch weather report.

def weather_report(latitude, longitude):

url = f"""{OPEN_METEO_ENDPOINT}?latitude={latitude}&longitude={longitude}¤t=temperature_2m,precipitation,cloud_cover,v

resp = requests.request("GET", url)

resp = json.loads(resp.text)

json_resp = json.dumps(resp, indent=4)

return json_resp

https://open-meteo.com/

weather_report(latitude, longitude)

This function returns weather report in json .

Accepts parameter latitude & longitude (e.g. "12.96","77.75")

It calls Open-Meteo API to fetch weather report.

{

"latitude": 19.125,

"longitude": 72.875,

.

.

.

},

"current": {

"time": "2024-05-30T21:00",

"interval": 900,

"temperature_2m": 29.7,

"precipitation": 0.0,

"cloud_cover": 36,

"visibility": 24140.0,

"wind_speed_10m": 2.9

}

}

https://open-meteo.com/

Flow

fetch_from_elasticsearch()gpt-4orun_conversation()

fetch_from_elasticsearch()gpt-4orun_conversation()

Available functions:
- fetch_from_elasticsearch(nl_query)
- weather_report(latitude, longitude)

User

last flight delayed for Mumbai?

last flight delayed for Mumbai?

fetch_from_elasticsearch()

Call detected function

json response {...}

Convert json into human readable format

The last recorded flight delayed for Mumbai was
Flight RMY5P1L by Kibana Airlines. The delay was due to a NAS Delay,

and the flight was delayed by 180 minutes.
The flight originated from Bologna Guglielmo Marconi Airport.

The last recorded flight delayed
for Mumbai was Flight RMY5P1L

by Kibana Airlines. The delay was
due to a NAS Delay, and the

flight was delayed by 180 minutes.
The flight originated from

Bologna Guglielmo Marconi Airport.

User

Parallel function calling

Only supported by latest OpenAI models - gpt-4o , gpt-4-turbo , and gpt-3.5-turbo

Query - How is the weather in Mumbai, and what about the last flight that got delayed there?

Parallel function calling is the model’s ability to perform multiple function calls together

Demo (Notebook)

Function Calling Resources

Function calling https://platform.openai.com/docs/guides/function-calling

Notebook https://github.com/elastic/elasticsearch-labs

Gemini https://ai.google.dev/gemini-api/docs/function-calling

Mistral https://docs.mistral.ai/capabilities/function_calling/

Deck https://ashish.one/decks/function_calling.pdf

https://platform.openai.com/docs/guides/function-calling
https://github.com/elastic/elasticsearch-labs
https://ai.google.dev/gemini-api/docs/function-calling
https://docs.mistral.ai/capabilities/function_calling/
https://ashish.one/decks/function_calling.pdf

Thank You
 in/ashisht iwari93
 @_ashish_t iwari

